• 0 Posts
  • 14 Comments
Joined 1 year ago
cake
Cake day: July 3rd, 2023

help-circle



  • Mind you, the DFT calculation from the Griffin paper is not a proof of LK 99 being a superconductor in any way. What it showed is the (potential) formation of flat bands near the Fermi surface. Band dispersion is associated with the kinetic energy of the electrons, so materials with flat band (and therefore electrons with suppressed kinetic energy) at the Fermi surface are more susceptible to interaction effect (and strong interaction causes all sorts of nonintuitive quantum effects). I’m not a DFT expert in any sense, but from what I’ve heard, it is quite easy to “tune” your model to produce narrow (the limit of which being flat) bands from substitutions (e.g. the Cu substitution in this case) and such, which don’t necessarily lead to superconductivity.

    So I’ll take the DFT papers (there are quite a few now) as saying, “hey you want some flat band? Here’s some. We’ve done our part. Now some other theorist, do your magic and conjure up some superconductivity”. It’s a cog in the full picture, if there is a full picture


  • The point is there are established conventions among the practitioners on how these are pronounced, and not getting them right says something about the youtuber who may otherwise appear as an expert.

    You might be right on how the name ‘Schrieffer’ should be pronounced in its original tongue, but I’ve heard multiple former students and colleagues of Bob Schrieffer pronounce it otherwise to conclude that theirs is probably how Schrieffer himself intended his name to be pronounced.

    Yeah, can’t wait to hear economists’ take, or The Economist’s…







  • I agree with ya. I can hear it whenever I intentionally seek it out, even when it’s relatively loud out there. I tend to think of it as some baseline intensity (at some extremely high frequency/frequensies I’ve tried but yet to pin down) my brain perceives, that gets washed out more as external stimuli become stronger. This is partly what prompted me to speak about a reference level of intensity distribution over frequency (and therefore a power spectrum if you will) in the other comment thread. Normal brains have a reference level that adapts to the environmental average. Those of us with tinnitus have some nasty spikes at high frequensies. “Hearing silence”, I speculate, is more of a response to a changing reference level – some of the responses will be the brain compensating for the change and thereby inducing acoustic (?) illusions reported in this work. A tinnitus brain will respond to a receding reference level by focusing again on those nasty frequency spikes.


  • Having read the NYT article (with the PNAS paper still not available through a certain hub), I think a useful analytical framework would perhaps be to think of silence as a negative space. E.g., take some background noise (this could be the environmental noise averaged over some time scale) at certain overall intensity as “zero” (or reference level), then complete silence will have the same frequency content as that background but with negative intensity. From there one can start talking about various forms of “partial silence” as different spectral compositions of negative intensity. I’d even posit that some of the illusions they discovered would work in a similar fashion with positive intensity boost as well (e.g.two disjoint boosts vs one sustained boost). It is probably more about the frequency content than the intensity relative to the reference level.